2021 Colorado SOTA and 14er Event

The Summits On The Air (SOTA) program originated in the United Kingdom but has propagated to most countries around the world. The program came to Colorado on May 1st, 2010 with Steve/WGØAT sending a CQ from Mount Herman, just west of Monument. Today, the SOTA program in Colorado (called WØC-SOTA) is very active with roughly 180 activators that operate from Colorado summits.

To celebrate our 10th AnniversaryWØC-SOTA is organizing a 10-10-10 Event with a challenge for Activators and Chasers alike. (Activators operate from summits, Chasers try to contact them.)

Activator challenge: Activate 10 (or more) 10K feet (or higher) summits (in Colorado/WØC) within 10 days.

Chaser challenge: Chase Activators on 10 different (or more) qualifying WØC summits (10K or higher) within the 10 days.

Event Date: We will kick-off the event in conjunction with the Colorado 14er event on August 7th, 2021 and conclude on August 16th.

Everybody is invited to participate, either as an Activator or a Chaser. Block off these days in your calendar now and start planning for how you can participate. Feel free to operate as much or as little as you would like. It is all about having fun messing around with radios. Any HF, VHF or UHF band can be used for making SOTA contacts, with the most popular ones being 40m (CW & SSB), 20m (CW & SSB) and 2m (FM).

Steve/WG0AT operating from the summit of Mount Herman (W0C/FR-063)

Note that the recommended 2m FM frequencies for the 14er event have changed to:

146.580 FM   North America Adventure Frequency
146.550 FM    Simplex Alternate
146.490 FM    Simplex Alternate
146.520 FM    National 2m FM Calling Frequency
(as needed, please don’t hog the calling frequency)

There will be a leaderboard on the W0C-SOTA website showing all participants who meet one of the challenges. More details will be announced on the WØC-SOTA Website as soon as they are hashed out.

For more information on the SOTA program in general, see the worldwide SOTA website.

Full Disclosure: May 1 is actually the 11th Anniversary, but the COVID-19 Pandemic interfered in 2020, so we are catching up.

A Decibel Is Still A Decibel

When discussing signal levels and power output, hams like to say things like:

Using higher power isn’t important because it only gives you one additional S unit

and

You’ll lose some power in the coax but you won’t even notice a few dB

These statements are often true and at the same time may be completely wrong. I’ve noticed that radio amateurs pushing the limits of their station pay close attention to every decibel they gain or lose. This is especially true at VHF/UHF frequencies where signals may be weak. A dB here, a dB there, the next thing you know it adds up to something big!

Definitions

First, let’s make sure we have a few definitions right. The decibel (dB) is defined as the ratio of two power levels:

dB = 10 log (P2/P1)

One decibel corresponds to a 26% increase in power level. A well-known rule of thumb is that doubling the power corresponds to a 3 dB increase. Similarly, chopping the power in half drops the signal level by 3 dB.  A 10 times increase in power is 10 dB. (Voltage can also be used to calculate decibel relationships but to keep it simple, I’ll just use power.)

The S Unit is normally defined as a 6-dB change in signal level, which is a factor of 4 in power. (Your S meter may or may not actually follow this rule but that is a topic for another day.)

Power Level

Let’s compare a few different power levels to get a feel for how decibels and S units behave. Let’s use a 5 watt QRP level as our reference power. If we crank up the power to 100 watts, we  have 10 log (100/5) = 13 dB increase in power level. This is slightly more than two S units (2 x 6 dB), so we would expect the S meter on the other end to read 2 units higher.

Now suppose we kick in our linear amplifier to produce a 1 kilowatt RF signal. This power level is 10 log (1000/5) = 23 dB higher than the 5 watt signal, or roughly four S units.

Now if our QRP signal was a solid S9 to start with, adding another 23 dB on top of it may not be that significant. The station can be heard at S9 or can be heard even louder at S9 + 23 dB. Except when there’s a pile of stations all calling that rare DX…then the loudest station tends to be heard. Crafty operating skill and good luck may overcome the power difference.

But consider the other extreme. Our QRP station is being heard right at the noise floor on the receive end. The two stations are struggling to complete the contact and the propagation path degrades by 2 dB. Now the QRP station is below the noise and uncopyable. We increase our power to 100 watts and gain 2 S units…still not very strong but the ability to receive the signal improves dramatically. Crank it up to 1000 watts and you gain another couple of S units and the copy is quite good. The key point is that changes in signal level matter most at the margin, when you can just barely copy the signal. (By the way, there is nothing wrong with running QRP…many ops enjoy the challenge of making contacts with low power.)

At the receiver, our ability to recover the signal is determined by the signal-to-noise ratio (SNR). A higher noise floor at the receiver means it will be more difficult to hear the signal coming in. The type of modulation being used may also make a big difference. Good old CW and the WSJT modes use a narrower bandwidth and will get through when wider-band modulation (SSB, FM) fails. In all cases, a stronger signal works better.

Antennas

Antenna systems also increase our signal level…and they do it for both transmit and receive. I recently did some comparisons of VHF antennas from a SOTA summit. My 2m Yagi antenna has 6 dB of gain (referenced to a dipole) and my comparisons showed that the performance of this antenna was good enough to pull some signals out of the noise to be solid copy. This occurred when the other station’s signal was right at the noise floor (using my lower gain antennas) such that the 6 dB improvement had a significant impact.

Sometimes hams will say that VHF is just line-of-sight propagation and that the signal level doesn’t matter much. This is partially true but often we are stretching for contacts beyond line-of-sight. Take a look at this article: The Myth of VHF Line-Of-Sight. This is another case where we are operating on the margin and every dB matters.

Feedline loss can cause us to lose decibels, which impacts both transmit and receive performance. If your coaxial cable is short, then the losses may be negligible. Increasing cable length and increasing frequency produce more loss. For example, 100 feet of RG-8X has only 1.1 dB of loss at 10 MHz. Increase the frequency to 146 MHz and the loss jumps to 4.5 dB, using the Times Microwave cable calculator. That means 50 watts of power at the transmitter turns into 17.7 watts at the other end of the cable. Using LMR-400 coax reduces the attenuation to 1.5 dB.

Summary

You can choose to ignore small changes in your signal level. A dB here or there may not make a big difference with casual ham radio operating. But these losses tend to add up and may become significant. Most importantly, just a few dB may be the critical difference between making a radio contact or not, when operating at the margin.

About Those Drive Up SOTA Summits

The Summits On The Air (SOTA) program was designed with hiking/climbing in mind but some SOTA summits have roads that go to the top. Some notable ones that come to mind are Pikes Peak (W0C/FR-004), Mount Scott (W5O/WI-002), Mount Coolidge (W0D/BB-012), Sandia Crest (W5N/SI-001), Mount Greylock (W1/MB-001) and Mount Mitchell (W4C/CM-001). There are also summits that have trams, trains and chairlifts that provide easy access.

Joyce/K0JJW operating on Pikes Peak.

Some SOTA activators dismiss drive-up summits as not being the real SOTA experience. Everyone is entitled to their point of view and can choose their summits accordingly. I am too pragmatic (read: lazy) to worry about that. If there’s a road to the top, I am probably going to use it, whether it’s a serious 4WD road or a well-paved surface.

The Rules

The specific terminology used in the various SOTA Association Reference Manuals (ARMs) may vary a bit so I will refer to the Colorado (W0C) ARM:

The SOTA General Rules state that the method of final access to the radio operating location must be nonmotorized. The General Rules do not specify the distance, either vertical or horizontal, that this final access must cover. The use of non-motorized vehicles (e.g. bicycle) or pack animals to enter the Activation Zone (AZ) is permitted. Operations must not be in, or in the close vicinity of a motor vehicle, cannot use a permanent electrical power source, nor use a fossil fuel generator in any fashion. No part of the station may be connected in any way with the motor vehicle. All equipment must be operated from portable power source (batteries, solar cells, etc).

The intent of the rules is quite clear: SOTA is not a motorized activity…you need to operate independently of a motor vehicle. Like most rules though, there are shades of grade on the interpretation. Just how independent do we need to be? Unless you started your hike from your home location, all SOTA activations have some form of mechanized transport involved. It is just a question of how far you ride and how far you walk.

Some SOTA Associations used to suggest or require a qualifying hike for drive-up summits. This means that you hike down from the summit for some minimal vertical distance (100 feet or so) and then hike back up to “qualify” your activation. This idea seems to be on the way out and this language was removed from the W0C ARM some years ago. However, your Association may still encourage it or you could just decide that it is a practice that you want to do. (You can find ARMs here.)

Some new SOTA activators look at the rules and suggest they are too restrictive. They argue that people with limited mobility should be allowed to operate from a vehicle. These requests have been heard before and are immediately rejected. I do think the SOTA Management Team has crafted a workable approach that keeps SOTA oriented towards backpack portable operating while still allowing for minimal mobility.

Our Approach

The guiding principle that we use on our drive-up or tram-up summits is to use our normal backpack-portable SOTA station. However we get to the summit, everything goes into a pack which is carried for some minimal distance away from the vehicle, tram or chairlift. This keeps the drive-up SOTA station configured just like the hike-in variety: compact, lightweight, no chairs, no tables (unless they fit into our packs.) This avoids the “Field Day” style set up with lots of gear carried from the vehicle via multiple trips to create a Big Portable Station. Sometimes the drive-up summits are overrun with people, so a short hike away from the crowds can get you to a quieter spot.

That’s how we do it. What are your thoughts?

73 Bob K0NR

VHF SOTA Antenna Tests

A perpetual ham radio question is always which antenna is best? I have several different antennas and antenna configurations for working VHF SOTA and decided to do some comparisons.

Eagle Rock – W0C/SP-113

To test out some of our 2m SOTA antennas, Joyce/K0JJW and I went to Eagle Rock (W0C/SP-113) with an elevation of 9710 feet. I did the radio operating while Joyce collected the data. Eagle Rock pokes up out of South Park, which is a broad, high plain in central Colorado. This summit is kind of “mid-range” for Colorado…not as high as the 14ers but with significant elevation and prominence (~500 feet). It also was close enough to a number of SOTA chasers so I could get some good S-meter readings to compare antennas. On the summit, there is a clear 360-degree horizon, dropping off quickly in all directions.

Antennas Tested

Antenna A is our GO-TO antenna for VHF SOTA is the 3-element Yagi from Arrow Antenna, handheld so the boom is about 5 feet off the ground. Arrow does not specify the gain on this antenna but it has been measured at the Central States VHF Society conference to be ~6dBd.

Antenna A: Arrow 3-element Yagi for 2 meters.

Antenna B is a dual-band J-pole manufactured by N9TAX, supported by a telescoping fishing pole commonly used by SOTA activators. A J-pole has a halfwave radiator, so the gain is about 0 dBd, the same as a dipole.

Antenna B: Rollup J-pole (N9TAX) on a fishing pole.

Antenna C is an RH770 telescopic antenna mounted on a monopod, using a bracket that I made. See VHF/UHF Omni Antenna for SOTA Use. This antenna is a halfwave on 2 meters, so again we’d expect the gain to be ~0 dBd. The antenna is supported by a monopod which I usually just stick into the ground or strap to a bush.

Antenna C: RH770 Telescopic BNC dualband antenna on a monopod.

The three antennas being tested were driven with short coaxial cables fitting with BNC connectors for easy changes. The transceiver was a Yaesu FT-90 powered by a small Bioenno battery.

Chaser Stations

I put the word out that I’d be doing some antenna comparisons and five chasers showed up to assist. (There were are few other chasers that were too close to Eagle Rock such that the S meter readings would have all been “full scale” and not useful.)

Most of these stations were not line-of-sight because there is mountainous terrain blocking the direct path. This makes for a good test because this is often the situation when doing SOTA activations in Colorado. We often have mountains in the way, even on the high summits. Said another way, line of sight contacts are easy-peasy and the antenna performance is not critical. Getting the signal to punch through or around mountains is when the antenna really matters.

WZ0N was line-of-sight from Eagle Rock. KN0MAP was not line-of-sight and he had his Yagi antenna pointed at Pikes Peak (away from Eagle Rock). This is a common technique on VHF…point at a high summit and hope you get enough of a reflection to make the contact. The chasers are listed below.

Callsign Equipment Distance/Terrain
W0BV Icom IC-2730, X200A antenna, 35 watts 42 miles, blocked by a ridge
AD0WB Kenwood TH72A, X300A antenna, 5 watts 39 miles, blocked by mountains
KN0MAP Yaesu FT-857, 10-element Yagi pointed at Pikes Peak 35 miles, reflecting off Pikes Peak
WZ0N Baofeng HT, 5 watts 29 miles, Direct line of sight
K0MGL Yaesu FT-8900, 1/4-wave ground plane antenna, 10 watts 32 miles, blocked by mountains

Signal Reports

Your typical FM VHF/UHF radio doesn’t have a real S meter, just a bar graph display, so we worked in terms of “number of bars”. This does not give us a calibrated measurement but it does provide for a valid comparison. A signal that is 5 bars is stronger than one with 3 bars, but we don’t really know how much better (in terms of dB or S units). We recorded meter readings at both ends of the radio contact. My Yaesu FT-90 meter has 7 bars as full scale. On transmit, I was running the FT-90 at 20 watts.

Antenna A
Yagi
Antenna B
J-pole
Antenna C
RH770
Callsign Report Sent by K0NR Report Received by K0NR Report Sent by K0NR Report Received by K0NR Report Sent by K0NR Report Received by K0NR
W0BV 4 6 3 2 2 2
AD0WB 5 Full scale 3 Full scale, a little noisy 4 Full scale
KN0MAP 4 6 nil nil
WZ0N 7 5 5 4 5 4
K0MGL 7 6 1 1, very noisy 1 0, very noisy

A quick look at the Antenna A column shows that the Yagi had consistently better signal levels than the other two antennas.  For each contact, I did point the Yagi in the direction of the strongest signal, taking care to maximize the signal. This is an advantage and disadvantage…you have to point the antenna but you do get a stronger signal.

The two omnidirectional antennas (B and C) did not require pointing and they performed about the same. My impression is that Antenna B had slightly better overall performance based on listening to the FM noise. But note that the AD0WB readings were slightly better with Antenna C.

As is very common in the mountains, we experienced multipath distortion. This occurs when the signal takes multiple paths to the other station (reflecting off mountains) and then recombines at the receiver creating distortion and variation in signal level. Small changes in antenna position can cause a change in the signal level and amount of distortion. Multipath distortion was much more noticeable on the omnidirectional antennas. The Yagi antenna exhibited multipath but at a much-reduced level. This is a well-known phenomenon: directional antennas reduce multipath effects.

Another factor that I believe is important is that Eagle Rock pokes up quite dramatically compared to the surrounding terrain. Compare this to a large, flat summit that could shadow your signal at some angle of radiation. Antenna height relative to the immediate summit terrain might be more important. Another factor is that Eagle Rock is pretty much granite and not very conductive. So there is not much difference between having an antenna 5 feet off the ground (rock) vs putting it up on a mast.

Previously, I wrote about Charlie/NJ7V’s video that compared a roll-up J-pole with a 3-element Arrow Yagi antenna on two meters. Charlie’s results were a bit different, indicating that the J-pole was about the same or in some cases better than the Yagi.

Conclusions

The Yagi antenna clearly outperformed the two other antennas. So the Arrow 2m Yagi will continue to be our antenna of choice.

The paths to K0MGL and KN0MAP were the most difficult and this is where the Yagi performance really came through. For KN0MAP, we were both pointed at Pikes Peak and working off the reflection. This method worked well with the Yagi but had significant signal loss such that the omni antennas could not make it. Working K0MGL on the omni antennas was not much better but we did squeak out two contacts.

I was a bit surprised that Antenna B did not do significantly better than Antenna C, due to antenna height. This all seems to indicate that once you are on top of a rocky SOTA summit, additional antenna height does not matter. (It would be interesting to do some experiments with the same antenna set at different heights.) I do like having an omni antenna available so that we can monitor in all directions while eating lunch, etc. If we only have the Yagi at lunch time, it is usually laying on the ground or stuck into a tree, certainly not effective in all directions. Antenna C is so easy to deploy, it will probably be my preferred omnidirectional antenna.

This is just one test and one set of results. It will be interesting to do some further comparisons from other locations. Thanks to the chasers for assisting with these tests.

73 Bob K0NR

Test data in Excel spreadsheet:  Antenna comparisons – 2m FM Eagle Rock

Monitor Marine VHF Near the Ocean

When on a road trip, I usually monitor the 2m FM calling frequency, 146.52 MHz. For the most part, that frequency is pretty quiet but sometimes a fellow traveler, camper, SOTA activator or random ham shows up on frequency. I don’t usually bother with tuning into local repeaters as that requires frequent adjustment of the radio while cruising down the highway.

Our RV has an Icom IC-2730A transceiver that covers the 2m and 70 cm bands. This radio has two receivers, so one receiver is set to 146.52 and other one is set to “something else.”  Sometimes, I’ll go ahead and put one of the local repeaters in the other receiver, especially if we are going to hang out in one location for a while.

When driving near coastal areas, I often put the second receiver on the VHF Marine Channel 16 (156.80 MHz). This is the International Hailing and Distress Frequency for marine radio. You will hear boats calling each other on this channel, then switching to another working channel. It is also common to hear the U.S. Coast Guard come on the air with an announcement. (The USCG may say switch to Channel 22 to hear the announcement.)

Some other useful marine frequencies:

Channel 22   157.100 MHz   Coast Guard Liason Channel
Channel 68   156.425 MHz   Non-Commercial Working Channel

The complete list of VHF Marine frequencies are available here:

U.S. VHF Marine Radio Channels and Frequencies

Just another frequency to listen to when on the road.

73 Bob K0NR

 

Parks, Summits and Roadtripping

Getting out on the road and exploring is always fun, especially if you have ham radio on board. Joyce/K0JJW and I have been doing quite a bit of travel lately and we just completed our longest road trip so far with our RV.

Overview of the trip: Colorado to Key West, Florida and back again.

Our main destinations for the trip were four national parks: Congaree NP, Biscayne NP, Everglades NP, and Dry Tortugas NP. This determined the main route but we also found plenty of other things to do along the way. We started in Colorado, cut the corner across New Mexico into Texas, then east through Oklahoma, Arkansas, Mississippi, Alabama, Georgia and South Carolina. Then we headed south to Florida and ended up in Key West. Our return trip followed the gulf coast back to Texas, then back home.

Travel Philosopy

Planning a trip is full of trade-offs, so it is useful to have a general approach that the participants agree on. Our approach to this trip was to not drive too far every day but drive enough to hit the various places we wanted to visit. We are still working to find the right balance. This trip lasted 39 days, covering 6000 miles, which is about 150 miles per day. Some days we drove very little and other days were longer, maybe 400 miles.

Although the trip was created around the national parks, we filled in with interesting stops along the way. In particular,  we like to camp at state parks: the campgrounds are great and there’s usually something interesting about the park to enjoy. And did I mention they are natural Parks On The Air (POTA) opportunities? We also tried to work in some Summits On The Air (SOTA) activations that are relatively easy to access.

Rocky Victoria

Our recreational vehicle (RV) is a 2018 Winnebago Paseo, built on a Ford Transit chassis. We named her Rocky Victoria, using non-standard phonetics, but usually just refer to her as “Rocky”.

Rocky Victoria is our Winnebago Paseo RV.

Compared to your typical car or SUV, this Class B RV is huge. Compared to other RVs, this vehicle is small, about 22 feet long, usually fits in a standard parking space. With all of the normal RV stuff installed (stove, microwave, sink, refrigerator, toilet/shower combo, bed, etc.) there is not a lot of room left for personal gear.

Rocky fits us really well because it is easy to drive, getting in and out of places without much hassle. Also, setup and tear-down time at a campsite is minimal. One limitation is poor ground clearance, which is fine for forest service roads in good condition but not appropriate for offroad use. This affects what SOTA and POTA activations we do.

Radio Gear

We have an ICOM IC-2730A in Rocky, for normal 2m/70cm FM comms while running down the road. The antenna (not visible in the photo) is just a short whip on the driver’s side of the hood.

Rocky is not a big RV so by the time we load up all of our stuff, it is full. So the radio gear (and everything else we take along) must follow the backpacker principle of “take only what you need, use what you take.” No room for extra stuff you don’t use.

For this trip, we took along two ham stations:  A basic VHF SOTA station and a capable, picnic-table POTA station.

VHF SOTA Station

The VHF SOTA station is very compact and easy to carry. It covers the 2m and 70cm bands on FM, which is usually sufficient for us. The RF output power is only 5W, so it does not have the punch of one of our higher power radios. Not a bad tradeoff though.

Two Yaesu FT-1DR 2m/70cm handheld transceivers
Arrow 3-element Yagi 2m antenna
Two RH 770 dualband SMA antennas
HT chargers and other accessories

Picnic Table POTA Station

The POTA station is built around the FT-991, which is a 100 watt transceiver (HF/VHF/UHF) that is reasonably compact. We use a 20 Ah LFP battery to power the radio so it is portable and independent of the RV power sources.

Yaesu FT-991 Transceiver (HF, 6m, 2m, 70cm)
End-fed halfwave antennas for 40m, 20m, 17m, 15m, 10m
Roll-up j-pole antenna for 2m/70cm
20-foot fishing pole to support antennas
Two 25-foot lengths of RG-8X coaxial cable
12V, 20 Ah LFP Battery (Bioenno Power)

Joyce/K0JJW operates the picnic-table POTA station.

The POTA station does a great job at a campsite, usually on a picnic table. The POTA station fits inside my Kelty backpack so it can be taken for a hike. It is a bit heavy for a typical SOTA summit but works OK for drive-up and short-hike summits. It can also be set up inside the RV if required.

Single-band end-fed halfwave antenna (PAR EndFedz) for 20 meters.

Typically, we are going to try operating on 20m or 17m so that the halfwave antenna easily hangs from the fishing pole support. Depending on conditions, we often have to use 40m which takes a little more work to hang. Not a huge problem, though.

Collapsible fishing pole for supporting wire antennas.

For portable operating, I’ve tended to use a variety of end-fed wire antennas supported by a non-conductive pole of various sizes. For this trip, we used a 7 meter (21 feet) telescoping fishing pole that collapses to about 30 inches.  This pole will fit into my SOTA backpack.

20m halfwave antenna supported by the fishing pole mounted on the RV. (The 20m halfwave needs to be hung at an angle to be supported off the ground.)

To support the fishing pole directly from the RV, I attached a short length of plastic pipe to the ladder. It is a simple matter to slide the pole into pipe, resulting in the top of the pole being about 26 feet off the ground.

A short piece of plastic pipe is attached to the RV ladder so the fishing pole can be easily inserted.

The combination of the two stations gives us a lot of options for ham radio operating.

Summits On The Air

We activated three summits along the way: Mount Scott (W5O/WI-002) in Oklahoma, Choctaw County HP (W5M/MS-001) in Mississippi, and Monte Sano Mountain (W4A/HR-002) near Huntsville, AL.

Monte Sano Mountain is just east of Huntsville, AL inside Monte Sano State Park.

Monte Sano Mountain turned out to be a unique location because it is located in the Monte Sano State Park. The park surrounds the summit, which is broad and flat. We determined that the park campground is within the activation zone, so we camped there and did both SOTA and POTA activations.

Parks On The Air

We did a number of POTA activations along the way. This was done opportunistically, typically in the afternoon after we had set up our campsite. Our radio operating used SSB on 20m or 40m, along with a few 2m FM contacts.

K-0688  Lake Meredith National Recreation Area   US-TX
K-1090  Lake Chicot State Park   US-AR
K-1048  Monte Sano State Park  US-AL
K-0017  Congaree National Park US-SC
K-1832  Anastasia State Park  US-FL
K-0024  Everglades National Park  US-FL
K-0635  St. George State Park  US-FL
K-2992  Brazos Bend State Park  US-TX

Every one of these activations was a lot of fun. There’s nothing like sitting outdoors in the sunshine working a pileup of enthusiastic POTA hunter stations.

Summary

In this post, I emphasized the ham radio activity during this trip. Radio operating was not our main goal but it was a big part of the overall experience. Joyce and I had a fantastic time touring this section of the country, and we are looking forward to our next trip.

73 Bob K0NR

Celebrating 10 Years of Summits On The Air in Colorado

The Summits On The Air (SOTA) program originated in the United Kingdom but has propagated to most countries around the world. The program came to Colorado on May 1st, 2010 with Steve/WGØAT sending a CQ from Mount Herman, just west of Monument. Today, the SOTA program in Colorado (called WØC-SOTA) is very active with roughly 180 activators that operate from Colorado summits.

To celebrate our 10th AnniversaryWØC-SOTA is organizing a 10-10-10 Event with a challenge for Activators and Chasers alike. (Activators operate from summits, Chasers try to contact them.)

Steve/WG0AT on a SOTA activation with pack goat Rooster.

Activator challenge: Activate 10 (or more) 10K feet (or higher) summits (in Colorado/WØC) within 10 days.

Chaser challenge: Chase Activators on 10 different (or more) qualifying WØC summits (10K or higher) within the 10 days.

Event Date: We will kick-off the event in conjunction with the Colorado 14er event on August 7th, 2021 and conclude on August 16th.

Everybody is invited to participate, either as an Activator or a Chaser. Block off these days in your calendar now and start planning for how you can participate. Feel free to operate as much or as little as you would like. It is all about having fun messing around with radios. Any HF, VHF or UHF band can be used for making SOTA contacts, with the most popular ones being 40m (CW & SSB), 20m (CW & SSB) and 2m (FM).

There will be a leaderboard on the W0C-SOTA website showing all participants who meet one of the challenges. More details will be announced on the WØC-SOTA Website as soon as they are hashed out.

For more information on the SOTA program in general, see the worldwide SOTA website.

Full Disclosure: May 1 is actually the 11th Anniversary, but the COVID-19 Pandemic interfered in 2020, so we are catching up.

 

Here’s the SOTA Transceiver I’d Really Like

Joyce/K0JJW and I did another activation of Mt Herman (W0C/FR-063) today. This is a repeat summit for us this year but we were looking for an easy hike not too far from home.

The Yaesu FT-90 transceiver is small and lightweight, perfect for portable operating when you need a little more RF power.

As usual, we were just using the VHF/UHF bands for the activation. My favorite rig for this type of SOTA activation is a Yaesu FT-90, a very compact mobile transceiver (4 x 1.2 x 5.4 inches) that is no longer manufactured. It has a unique heatsink with an integral fan that can handle the heat from the 50-watt transmitter.  We use a Bioenno 4.5 Ah LFP battery to supply the power for the radio.

I was trying to work Bob/W0BV about 65 miles away and we were not able to complete the contact. The distance is not too difficult but there are several mountain ranges in the way. Sometimes we can get the electromagnetic waves to sneak through, but not today. Hiking down the mountain, I was thinking about how we could have probably made the QSO on SSB or CW, instead of FM.  I chose not to bring the all-mode transceiver (FT-817) along today, so that was not an option.

That is when the idea hit me. The FT-90 is the right form-factor and power level for VHF/UHF SOTA but it is limited to FM. Yaesu, if you are listening, here’s what I’d really like to see in a small mobile transceiver:

  • FT-90 size radio, perhaps a little larger but not much
  • 2m and 70 cm bands (include 1.25m if you’d like)
  • At least 25 watts of output power, more would be better (say 50 watts)
  • All mode capability (CW/SSB/FM/Digital), sure go ahead and toss C4FM in too.
  • No internal battery…I’m going to have to use an external battery anyway to get enough battery capacity

At various times, I have had people ask “why don’t they put SSB in handheld radios?” They recognize that SSB has weak-signal advantages over FM, so they wish their handheld transceiver (HT) could do it. I say rather than shove more features into an HT, put it in an FT-90 size radio. It would be a much more usable solution.

Although I arrived at this radio concept thinking about SOTA, it would also be a great mobile rig for general use. The FT-90 was popular because it was very compact AND it had a removable faceplate that could be mounted almost anywhere. There really is no way to get VHF/UHF SSB into a vehicle other than those all-band radios like the FT-857 and the IC-7100. Oh, did I say FT-857? Sorry, that model has been discontinued. The satellite operators will love it, too, especially if it could work 2m/70cm crossband full-duplex.

So there you go, Yaesu (or Icom)…a fantastic product concept at no charge. I would be happy to beta test it for you.

That’s my idea for today. What do you think?

73 Bob K0NR

Looking at VHF/UHF SOTA Data

On Twitter, someone recently commented that it would be nice to have more 2m SSB activity for Summits On The Air (SOTA). It is well known that FM is a more commonly used mode but that its performance suffers for weak signals. This got me wondering about which bands and modes are being used for SOTA above 50 MHz.

Above and Below 50 MHz

First off, I wondered what portion of SOTA radio contacts are on VHF/UHF. Looking at the SOTA database Facts and Figures page, I simply grouped the number of QSOs as “Above 50 MHz” and “Below 50 MHz.”

Frequency QSOs % of Total
Above 50 MHz 1,346,206 21%
Below 50 MHz 5,144,547 79%
Total 6,490,753 100%

So we can see that about 1/5th of the SOTA QSOs are done using VHF and higher frequencies. Certainly, we’d expect that the HF bands would dominate the total but this VHF+ percentage is higher than I expected.

Breaking Down > 50MHz

That leads to the question of what bands are used above 50 MHz? The table below shows the >50 MHz data broken out by band. The % of Total column indicates the percent of all QSOs (Above and Below 50 MHz), while the % of >50 MHz column shows the percentage relative to only >50 MHz radio contacts. Simply put, the % of Total column will sum to 21%, matching the number in the first table. The % of >50 MHz column sums to 100%.

Frequency QSOs % of Total % of >50 MHz
50MHZ 48,035 0.74% 3.57%
70MHZ 10,921 0.17% 0.81%
144MHZ 1,202,311 18.5% 89.3%
220MHz 1064 0.02% 0.08%
433MHZ 126,202 1.94% 9.37%
900MHz 204 0.00% 0.02%
1240MHZ 12,526 0.19% 0.93%
2.3GHZ 1554 0.02% 0.12%
3.4GHz 142 0.00% 0.01%
5.6GHZ 468 0.01% 0.03%
10GHZ 1186 0.02% 0.09%
24GHZ 167 0.00% 0.01%
Microwave 382 0.01% 0.03%

Well, it doesn’t take a degree in statistics to see that the 144 MHz band (2 meters) is the most popular VHF/UHF band for SOTA. Almost 90% of the QSOs are on this band. The next most used band is 433 MHz (70 cm) at a little over 9%. The 6m band (50 MHz) comes in at third with about 3.5%. The other bands are so small, they don’t really add much to the total.

The data on the SOTA page does not break out mode used by band but it does provide some aggregate mode numbers. The number of FM contacts (using any band) is 1,186,542. It is reasonable to assume that almost all of these FM QSOs were made above 50 MHz. (FM is used a bit on the 10m band but that combination is rare in SOTA.) That means, for frequencies >50 MHz, 88% of the QSOs (186542/1346206) were completed using FM.  We don’t know how the remaining 12% splits out but I would expect them to be a mix of SSB and CW, but dominated by SSB.

Given the high number of 144 MHz contacts in the mix, it is safe to say that 2m FM is the dominant mode for VHF/UHF SOTA. After all, it is The Utility Mode. The reasons are obvious…almost every radio ham has a handheld transceiver that can do 2m FM. It makes for an easy way to get on the air and activate a summit. More importantly, it is an easy way to chase a summit. When I plan a SOTA activation, I think about the kinds of operators that will be within range and what kind of gear they are likely to have. It does me no good to drag along equipment for 2m SSB/CW if there is no one around to work that band/mode.

This analysis does confirm that the number of non-FM QSOs on VHF/UHF is relatively small. The 12% of non-FM QSOs above 50 MHz corresponds to only 2.5% of all SOTA QSOs. So why is this? Clearly, the affordability and popularity of the FM handheld transceiver is a big factor.  There are portable radios that can do “all modes” on VHF/UHF such as the Elecraft KX3 (2m option), Yaesu FT-818, and the Icom IC-705, but these are much more expensive.

What About 70cm and 6m?

Now, it is interesting that the 70cm numbers are small compared to 2m. Many of those handheld transceivers that get used for 2m also have 70cm included, so you might expect there to be more 70cm QSOs in the mix. For a given boom length, a 70 cm Yagi antenna will have more gain than a 2m Yagi. So gain is easier to come by on the higher band. However, 2m propagation tends to be a little better than 70cm, on average.

Note that the SOTA rules do not encourage working the same station on more than one band. You only get credit for working a station once on an activation. (Compare this to VHF contest scoring which usually adds in additional credit for working stations on multiple bands.) So if a chaser works someone on 2m, they typically don’t bother working them on other bands.  I am not saying this is bad, I am just trying to explain why we don’t see more QSOs on 70cm.

The other band you might expect to see more activity is 50 MHz (6 meters). This band is available to Technicians in the US and, when the band opens up, you can easily work a thousand miles or more via Sporadic-e propagation. (Sometimes F-layer propagation, too, but we’ll need a whole bunch more solar activity for that to happen.) Many HF rigs include 6m as a “bonus band”, including some of the QRP radios popular with the SOTA crowd (KX3, IC-705, etc.) So why are the 6m numbers so low? This band offers a metric ton of fun, but it dishes it out randomly. There is a reason they call it the Magic Band…sometimes the Magic is there and sometimes it is dead quiet. When it’s dead quiet, it is a poor imitation of the 2m band. It also requires larger antennas, so if an activator decides to use antenna gain to help their signal, a portable Yagi for 2 meters is going to be a lot handier than one for 6 meters.

CW and SSB

This data does show that CW and SSB are lightly used for SOTA on the VHF/UHF bands. This is an opportunity. If more of us used these modes, it would improve our ability to squeeze out contacts when the signals are weak.

Bob K0NR

Reactions to the North America Adventure Frequency

While I did not originate the idea, I have been promoting the use of 146.58 MHz as the North America Adventure Frequency.  (Rex/KE6MT and George/Kj6VU came up with the idea.) My previous blog post explained the thinking behind it, along with my own personal biases, I’m sure.

When presented with the idea of The Other Simplex Frequency, I generally get three types of reactions:

1. Great idea! These people generally live or operate in locations where the 2m FM calling frequency (146.52 MHz) can get kind of busy, so they see that having an alternate frequency that everyone knows about has value. They may or may not still call on .52 but having another designated frequency is a plus.

2. It will never get used in my area This reaction comes from locations where people tend to congregate on 146.52 MHz and will probably not monitor any other frequency. The SOTA activators say stuff like “I’ll never contact anyone on 146.58 MHz so I’ll have to just use keep using 146.52.” This is not a problem, do whatever makes sense.  The North America Adventure Frequency will probably not get used everywhere and that is just fine.

3. What, people actually talk on 2m FM simplex? These folks are just plain missing out. I don’t know how to help them.

73 Bob K0NR

The 2 Meter Band: Much More Than FM

Way back in the Wayback machine, when I was working on getting my Technician license (in the 20th century), I recall looking at the frequency bands available to Techs. Technicians had operating privileges for everything above 50 MHz, which looked like a lot of useful spectrum to me. The idea at the time was that Technicians were exploring the new frontier of amazingly high frequencies. Since then, the Technician license has morphed to be the entry level license.

ICOM has a good graphic that shows all of the ham bands and shows the common subbands for various modes. I snipped out the portion that covers the most popular VHF/UHF bands (below). Wow, look at all the stuff you can do! Note that the 2m band offers 4 MHz of spectrum, big enough to fit eleven 20 meter bands inside it. (Yeah, yeah, the propagation is a lot different.)Speaking of bandwidth, take a look at the 70 cm band, with 30 MHz of spectrum. (Not shown is the 23 cm band, which spans 60 MHz.) The higher you go in frequency, the more spectrum there is.

Most people think of the 2-meter band as just FM and repeaters, but it is much more than that. I copied the 2-meter band graphic and added my own notatation on the various uses of the band.

Much of the band is allocated to FM, which is consistent with the popularity of the mode. I didn’t mark all of the FM segments, so refer to the color coding to see them. But there is much more than FM simplex and repeaters. Down on the low end is the CW-only segment and EME activity (Earth-Moon-Earth or moonbounce). The “weak-signal” enthusiasts tend to use the SSB portion, with the SSB calling frequency of 144.200 MHz (Upper Sideband). You may also hear CW in the SSB subband because radio hams flip back and forth between the modes depending on propagation.  Meteor scatter is mostly done via the WSJT-X mode of MSK144 around 144.140 MHz. I forgot to include FT8 on the first posting but I have since added it in, around 144.174 MHz. FT8 is not that common on 2 meters but I have made a few contacts with it.

Automatic Packet Reported System (APRS) activity is on 144.390 MHz, using FM-based 1200-baud packet radios. Other packet radio usage is not shown but is usually around 145.01 MHz. The 2m band is very attractive for satellite use, with VHF propagation properties and manageable doppler shift for Low Earth Orbit (LEO) satellites. The downlink from the International Space Station (ISS) is usually 145.80 MHz.

Over time, I’ve used all of these 2m modes mentioned above, with the exception of EME. I am still working on that one and I hope to have a new 2m Yagi installed sometime this year that will enable it.

73 Bob K0NR

What Cows Think About 146.52 MHz

I see a lot of cows standing around in Colorado ranch land, and I often wonder what they are thinking. As a result, I’ve been experimenting with a series of graphics that show cows standing out in the field thinking great thoughts. Surprisingly, they are often thinking about ham radio topics. Who knew? I’ve posted these on Twitter (@K0NR) which usually generates some responses.

Recently, the cows were thinking about the 2m FM calling frequency.

Some of my international followers pointed out the 2m FM calling frequency is not 146.52 MHz in their country. Sometimes it is difficult to localize VHF content, so sorry about that.

EA3IEK commented that the calling frequency should also be the listening frequency. (This is the crux of the problem with calling frequencies on 2m FM…what is the best ratio of calling and listening?) So I quickly modified the photo.

Then I could not resist posting this one, inspired by Joey on the Friends television show. Moo. It’s just a cow’s opinion.

73 Bob K0NR

Radio Fun on Threemile Mountain (W0C/SP-107)

Lately, for the ARRL January VHF contest, I try to find a SOTA summit to activate. Operating time is usually just a few hours, so it does not make for a big score. The main advantage is for VHF SOTA (Summits On The Air) because there is a lot more activity on 2m CW and SSB. This year, I wanted to go for the mountaintop trifecta of SOTA, POTA (Parks On The Air) and VHF contest in one activation.

Threemile Mountain is an easy SOTA summit: easy to access via forest service roads and an easy hike.
Joyce/K0JJW operating the portable station on 2m FM.

Threemile Mountain (W0C/SP-107) emerged as the activation summit because it is not too far from our cabin and accessible in the winter. (This time of year, the roads to many of our favorite summits are blocked.) For POTA, it is located in the Pike National Forest (K-4404). Because it is a short hike, I concluded that I could carry the Yaesu FT-911 and the 20 Ah Bionno battery. This would cover all the bands, give us more RF punch and still have plenty of battery capacity.

The portable station with 100 watts on HF, 50 watts on 2m/70 cm.

I carried quite a collection of antennas which gave us plenty of operating choices. We started out on 2m and 70 cm FM, working mostly local stations. This quickly got us enough contacts for SOTA and POTA points. We used a rollup J-pole for 2 meters and 70 cm, until it became intermittent and the SWR went wild. Then we switched to the Arrow 3-element Yagi for 2 meters.

Bob/K0NR operating from Threemile Mountain.

About that time, I decided to see what was happening on 2m SSB. There were a number of contest stations on the air, mostly from the front range cities (Denver, Boulder, Colorado Springs, …). I worked a bunch of them using 50 watts from the FT-991 to the 2m Yagi antenna (horizontally polarized).

The QSO between K0NR on Threemile Mountain (DM78) and Larry/N0LL near Smith Center, Kansas (EM09).

Suddenly, I was surprised to hear N0LL from Kansas calling me. I’ve worked Larry before from Colorado but it usually was from a really good location such as Mt Herman or Pikes Peak. Even then, we often had to switch to CW to complete the contact. Today he was louder than many of the Denver stations. We easily worked on SSB, which turned out to be a new personal best DX for me from a SOTA summit (372 miles).

We deployed both the SOTA and POTA flags today.

After things slowed down on 2m SSB, I decided to make some HF contacts. The North American QSO Party (SSB) was active, so I decided to set up for 20m and see who I could work. Running 100 watts to an endfed halfwave kept me competitive with the contest stations. Then I moved up to 17m SSB and worked non-contest POTA and SOTA chasers.

Bob/K0NR and Joyce/K0JJW hanging out on the summit of Threemile Mountain.

We both accomplished the three-in-one mountaintop activation for SOTA, POTA, and the VHF contest. I also worked the NA QSO Party, so that makes it four-in-one, but who is counting?  The January weather cooperated with us with almost no wind on the summit, about 28 degrees F. We sat there in the sunshine and just enjoyed the view before hiking back down.

73 Bob K0NR

Best VHF SOTA Antenna?

Charlie/NJ7V and Gaston/KT1RUN did a comparison of VHF antennas during a SOTA activation. Specifically, they compared a rubber duck antenna, a J-pole antenna on a tall mast, and a 3-element Yagi antenna. Spoiler Alert: the rubber duck sucks (they all do) but the Yagi and J-pole performed about the same.

Joyce/K0JJW and I use the Arrow 3-element Yagi antenna for most of our SOTA activations, so I am very familiar with that one. We also have a rollup J-pole that we use once in a while.

Charlie used the Yagi the same way we do: handheld at ground level. The J-pole was on a mast, maybe 12 feet (?) in the air. Although they were on a summit, there is some performance improvement getting the antenna higher than the surrounding terrain. The gain of the Arrow 3-element Yagi has been measured at about 6 dBd. The gain of a J-pole, being a halfwave radiator, is 0 dBd. The additional height of the J-pole has to make up this 6 dB of gain difference to be roughly equivalent.

A big difference, though, is that the Yagi antenna has to be held and pointed. The J-pole is always pointing in the right direction so you can just focus on operating and logging. We may have to consider using a omni antenna instead of the Yagi.

Good stuff!

73 Bob K0NR

North America Adventure Frequency: 146.58 MHz

Recently, on the nasota group,  there was a discussion about designating an alternative 2m FM frequency for Summits On The Air (SOTA) use (instead of 146.52 MHz). The main driver for this is that 146.52 MHz can get busy with other radio traffic and/or a busy SOTA activation can tie up the calling frequency for a long time.

Rex KE6MT (SOTA W6 Association Manager) kicked it off with:

A friend of mine, George KJ6VU, has been talking with me and several others about the idea of an FM “Adventure Frequency.”  It would be for more than just SOTA – other *OTA’s could also use it. There are other ideas to layer on top of it, such as tone signaling so that you don’t have to hear traffic you don’t want to hear, and repeater infrastructure for announcing someone’s on the frequency with a given tone, etc.  But the core thing would be to decide on a frequency and really get it in use.  The National Calling Frequency (146.52) can be great for a few contacts sometimes, but other times it’s problematic either because it’s being hogged or because nobody’s listening.  Of course, this Adventure Frequency could have the same issues present themselves differently, but would alleviate some and pave the path for future additions mentioned above.

I have previously written about the challenges of using 146.52: The Use of 146.52 MHz

One important idea is to include the other “OTAs” in adopting this frequency, most notably Parks On The Air (POTA). Hence the name “Adventure Frequency,” and not “SOTA Frequency.” It is really about hams operating portable in an outdoor setting. Of course, like all amateur spectrum, this frequency must be shared with other users.

It may seem like a simple thing to choose a nationwide simplex frequency but VHF band plans are managed regionally. In particular, there is a mix of 15-kHz and 20-kHz channel spacings. (For more background on this see Simplex Channel Confusion on 2 Meters.)

After some discussion, the group settled on 146.58 MHz. There was some dialog around using CTCSS for signaling but nothing specific surfaced.

Some key points:

  • The NAAF is 146.58 MHz.
  • This frequency is in addition to, not a replacement for, the National Simplex Calling Frequency 146.52 MHz.
  • Local usage will likely vary depending on needs.
  • Program 146.58 MHz as The Other Simplex Frequency in your radio.

What does this mean to you?

Program 146.58 MHz into your radio and have it available. If you are doing SOTA (or POTA) activations, consider using this frequency, especially if you are in an area where 146.52 is used a lot. (I’ve already started using this frequency for SOTA activations near urban areas.)

73 Bob K0NR

Recommended Colorado Hotspot Frequencies

A big trend in ham radio activity is the use of internet-connected transceivers commonly referred to as hotspots. These devices often use one (or more) of the popular VHF/UHF digital formats (DMR, D-STAR, Fusion) but analog FM is also used. They allow a radio amateur to have a local RF connection into one of the extensive radio networks (e.g., Brandmeister).

Unfortunately, there have been situations where radio amateurs arbitrarily chose hotspot frequencies that caused interference with existing radio activity. For example, a hotspot showed up on the 70 cm SSB calling frequency, 432.100 MHz. One of the worst examples of interference was a hotspot sitting on the input frequency of a satellite transponder. Not good.

The Colorado Council of Amateur Radio Clubs (CCARC) is the VHF/UHF frequency coordination body for the state of Colorado. Included in its spectrum management role, the CCARC maintains a detailed set of band plans (called Frequency Use Plans) for the 144 MHz, 222 MHz, 420 MHz, 902 MHz and 1200 MHz bands.

The CCARC recently decided to provide some guidance on what frequencies should be used for hotspot operation. Previously, the operator of a hotspot had to scan through the Frequency Use Plan and figure out where hotspots fit in. It wasn’t very obvious, so the CCARC now recommends 10 specific frequencies on the 70 cm band for hotspot use.

These frequencies are available for simplex hotspot use. However, for each of these simplex frequencies, there is also a corresponding frequency 5 MHz lower that can be used for hotspots that operate duplex.

Unlike repeaters, hotspots are not coordinated by the CCARC. With 10 frequencies available, it should be easy to find one that doesn’t have any co-channel interference from other users. See the complete CCARC hotspot guidance here.

These guidelines won’t solve every problem but it will help people find a hotspot frequency that plays well with others. These frequencies are valid for Colorado only. Check your local VHF/UHF band plans for more information.

73 Bob K0NR

Disclosure: I contributed to these CCARC guidelines but I don’t speak for the CCARC.

The Truth About Tiny SOTA Transceivers

After seeing some videos about small HF transceivers for Summits On The Air (SOTA), I feel I need to set the record straight.

The following video shows the World’s Smallest SOTA Transceiver in use. Of course, it uses the UHF spectrum because shorter wavelengths enable smaller ham radio stations.

The radio shown in the video is the NKTech NK-M1 UHF transceiver.

This radio is a 16-channel UHF transceiver, available from multiple online vendors. I programmed it to operate in the 70 cm band on 446.0 MHz.

73 Bob K0NR

Top Five K0NR Blog Posts for 2020

Closing out 2020, here are the top five blog posts at k0nr.com during the year. Some people may see this as a lazy way of creating one more blog post for the year without much work. This is definitely true. I hope you enjoy it anyway.

Leading the list is this blog post…a perennial favorite that seems to make the top five each year.

Getting Started on 2m SSB

This is another popular article that explains some of the details behind the 2-meter band plan. This particular article is tuned for Colorado but it also provides a link to an article that covers the topic for the USA.

Choose Your 2m Frequency Wisely

New on the blog this year,  I wrote this article about the Yaesu FT-4XR handheld transceiver. Spoiler Alert: Buy this one instead of the Baofeng.

What About the Yaesu FT-4XR?

Coming from nowhere, this article talks about an alternative firmware package for the popular Tytera MD-380 transceiver. I don’t know why this is getting so many hits but it might just be people searching for the TyMD380toolz, which seems to have disappeared.

TyMD380toolz for Tytera MD-380

The fifth-place post is one of my personal favorites that talks about proper kerchunking of repeaters. It even introduced a new Q-signal for kerchunking, although I must admit it may not be catching on.

Proper Kerchunking

Editor’s Choice

I am going to add one more post to this list. No extra charge. This one announced that Joyce/K0JJW achieved Mountain Goat status in the Summits On The Air program. You Go, Grrrrl!!!

New SOTA Mountain Goat: Joyce/K0JJW

 

POTA: Arkansas River Headwaters State Park (K-1208)

The Arkansas River Headwaters is a unique recreation area that follows the upper Arkansas River in Colorado, extending roughly from Leadville to Pueblo. POTA has it listed as the Arkansas River Headwaters State Park, but the Colorado Parks and Wildlife website shows it as the Arkansas Headwaters Recreation Area. This area is a bit unique, a cooperative effort involving Colorado Parks and Wildlife, the Bureau of Land Management, and the US Forest Service. See map here.

Joyce/K0JJW working the pile from POTA K-1208

Joyce/K0JJW and I decided to activate this park earlier this week, enjoying a nice sunny day. We operated from the Collegiate Peaks Overlook, which has a picnic area and an excellent view of Mount Princeton and adjacent peaks.

The wire antenna is supported by a SOTAbeams mast inserted into a drive-on mount.

For POTA, our standard station configuration is the Yaesu FT-991 transceiver driving an end-fed halfwave antenna, usually on 20m or 15m. We have a collection of end-fed halfwave antennas that cover 40m and up.  We have bigger and smaller transceivers available to us, but the FT-991 is small enough to be portable but includes an antenna tuner and has 100 watts of output available. (Typically, we run about 50 watts of RF output on battery power.) Our power source is a Bioenno 12V 20aH LFP battery.  This battery is lightweight and compact, capable of running the FT-991 for hours.

Bob working VE4RBH and AG7KO on 20 meters.

We set up our station on a convenient picnic table. We had hoped to lash the mast to a conveniently-located post or tree, but none were present. Our backup plan was the drive-on mount, held by the front tire of the truck. The 20m band was alive so we just set up on that band and never looked back. We also worked some of the locals on 2m FM. It is always fun to see who shows up on that band.

Here’s Joyce working AA5UY in Louisiana.

I don’t think we have really optimized our POTA setup but we have found an approach that works well. Never underestimate a properly-fed halfwave antenna up in the air.

73 Bob K0NR

More On SOTA and POTA

Recently, I commented on participating in the Parks On The Air (POTA) program: How About Parks On The Air? Since then Joyce/K0JJW and I have done a few POTA activations, including a few combination SOTA (Summits On The Air) + POTA activations. We are starting to sort out how SOTA and POTA work for us. I am sure this will evolve over time as there are many operating options with both programs. But here is what we’ve done so far.

Recall that we’ve been focusing on VHF/UHF operating for SOTA, although I did break down and actually made some HF contacts from a SOTA summit recently. VHF/UHF  is a good match for SOTA (Height Above Average Terrain). However, for some remote summits, it can be a challenge to get enough radio contacts (4) to qualify for the SOTA points. Using HF can be a big help in generating contacts. POTA can also be done with VHF, some parks have high elevation, but many of them are not attractive VHF locations. POTA requires 10 radio contacts to qualify for points, so that raises the bar a bit, too.

Bob/K0NR on Mount Herman, displaying the SOTA and POTA flags.

Yesterday, we decided to hike up Mt Herman (W0C/FR-063) for a short afternoon VHF/UHF activation. I posted both a SOTA alert and a POTA alert.  We made plenty of radio contacts (40 total) and submitted logs to both the SOTA and POTA websites. I know there were SOTA chasers out there but I’m not sure if anyone worked us specifically for POTA. As usual, a lot of hams give us a call just because it is fun to work someone on a summit (without any SOTA or POTA interest).

The majority of our SOTA activations in Colorado are in national forests, which count as “parks” for POTA. So it is easy to tack on a POTA activation when doing SOTA.

Vehicle-Based POTA

Joyce and I also did some POTA activations from a vehicle. It is pretty easy for us to get to Pike National Forest (K-4404) or San Isabel National Forest (K-4407) and set up a portable station.

The vehicle-based POTA station, as used in Yellowstone National Park during the year of the ARRL NPOTA program.

We used a Yaesu FT-991 and endfed halfwave antennas for 20m and 15m, supported by a SOTAbeams pole. This is the same configuration I’ve used for portable operating from many locations, including some Caribbean islands. I recently purchased a 20 Ah LFP battery from Bioenno Power to use as a power source so that we don’t rely on the vehicle battery.

We focused on HF for these POTA activations and were pleased to have decent pileups of stations calling us on the 20m and 15m bands. Fifty watts to a halfwave antenna works just fine. We also made it a point to call on 2m FM and usually picked up a handle of contacts on that band, too.

What’s Next?

At this point, our outdoorsy portable operating is looking like this:

  • SOTA Summits – if the summit is in a park, we will probably go ahead and submit a POTA log along with the SOTA log. Many of the W0C SOTA summits are in national forests, national parks or state parks. VHF-only activations will probably have less impact on POTA…those chasers/hunters tend to be on HF. On HF, we will be running QRP power levels.
  • POTA Parks (day trip) – another option is for us to just stop by one of the national forests or a state park and get on the air. (Pike National Forest is about 2 miles from our home.) This will be focused on the HF bands but we can always make a call or two on VHF. This will be operating from or close to a vehicle, so probably running 50 watts on HF with a wire antenna.
  • POTA (RV camping) – we’ve been RV camping in state parks and national forests this past year. An obvious additional activity is to set up on HF for a POTA activation. We haven’t done this yet.

I’ve already done a combination VHF Contest and SOTA activation, so this could be extended to include POTA. Three Things In One. In fact, some locations qualify for more than one POTA park, so maybe it is time for a Four-In-One.

73 Bob K0NR