Practical Amateur Radio Measurements

Bob Witte, KØNR bob@k0nr.com Monument, CO

Bob Witte KØNR

Electrical Engineer

35 years in the Test and Measurement Industry with Agilent Technologies / HP

Author of

Electronic Test Instruments
Spectrum and Network Measurements

Electronic Test Equipment

- The Multimeter
 Measures DC/AC voltage, current and resistance
- The SWR Meter
- The Antenna Analyzer
- The Vector Network Analyzer (VNA)

Antenna System Measurements

The Multimeter

- Also known as voltmeter, VOM (Volt-Ohm-mA meter), DVM (Digital Voltmeter), or DMM (Digital Multimeter)
- Voltmeter, ammeter and ohmmeter combined into one instrument
- DC and AC measurements
- Some models have diode test, continuity, capacitance, inductance, frequency, temperature
- Bench or handheld form factor
- Mostly digital meters, some analog meters

"Digital" is derived from the word "Digit" which means finger.

Be careful where you put your digits when using a Digital Multimeter

Safety First

Graphic courtesy of Agilent Technologies

Lots of Meters Out There

A Typical Low Cost DMM

- Velleman DVM850BL
- Price <\$25</p>
- 3½ Digits
- 0.5% to 1.5% Accuracy (depends on range)
- Diode test
- Continuity test
- Average reading meter (inferred RMS)
- IEC 1010 Cat II 600V

Circuit with Battery and Resistor

Ohm's Law: I=E/R

Note: Positive current convention used

Voltage Measurement

- Configure DMM to DC voltage
- . DMM appears as "open circuit"
- Connect DMM in parallel with voltage to be measured

Current Measurement

- Configure DMM to DC Current
- DMM appears as short circuit
- Connect DMM in series with current to be measured
 - Don't select current mode by mistake
 - Be very careful how you connect when in current mode
 - Short circuits can cause big problems!

Resistance Measurement

- Configure DMM to Resistance
- Remove power from the circuit
- DMM provides power to the circuit being tested
- Connect DMM in parallel with the resistance to be measured
- Make sure there is nothing else in parallel with the resistor

Ten Amateur Radio Applications of a DMM

- 1. Check the power supply voltage on the new power supply you just purchased.
- 2. See if your HT battery pack is fully charged.
- 3. Measure the current that your transceiver draws to estimate how long your emergency power system will last during a blackout.
- 4. Sort the bag of resistors you purchased at the swapfest.
- 5. Check a fuse to see if it is blown.

Ten Amateur Radio Applications of a DMM (2)

- 6. Troubleshoot your broken rig by checking the bias voltages against the service manual.
- 7. Figure out if the AA batteries the kids left for you are dead.
- 8. Verify that your coax is not shorted between the shield and center conductor.
- 9. Check the level of the power line voltage in the ham shack.
- 10. Check for good DC continuity between the ends of the cable you just soldered.

Quick Guide to Buying a DMM

- What? You don't have a Multimeter?
- Buy a digital meter (forget the analog ones)
- Should have a minimum of 600 V Cat II (IEC 1010) rating
- Should have DC volts, AC volts, resistance and DC current
 - (might not have AC current)
- Other features to consider:
 - Continuity test mode ("beeper")
 - Diode test mode
 - Autorange
 - "Analog" Bar graph
 - Battery test mode
 - True RMS

Antenna Measurements

- SWR = Standing Wave Ratio, more properly called Voltage Standing Wave Ratio (VSWR)
- Measures the match between source (transmitter) and load (antenna).
- Perfect match is SWR = 1.0 (1:1)
- Anything greater than 1.0 is less than perfect
- ightharpoonup SWR is always ≥ 1.0

SWR Measurement

Transceiver, transmission line and antenna are all nominally the same impedance (50 ohms for amateur radio work).

SWR Measurement

Perfect Match: $V_R = 0$, no reflection, SWR = 1.0 **Small reflection:** $V_R = 20\%$ of V_F , SWR = 1.5 **Large reflection:** $V_R = 80\%$ of V_F , SWR = 9 **Open load:** $V_R = 100\%$ of V_F , SWR = infinite

The Fundamental Measurement

What is the impedance looking into this port?

$$Z = R + jX$$

 $SWR = Z_L/Z_0 \text{ or } Z_0/Z_L$
whichever is ≥ 1 , for Z_L real

Example:

What is the SWR with $Z_L=100\Omega$? SWR = 100/50 = 2

$$ρ$$
 = reflection coefficient= V_R/V_F
RL = return loss (dB) = -20 log ($ρ$)

 $Z_0=50 \Omega$

SWR Meter

SWR meter is inserted into the transmission line, which usually requires an additional cable between transceiver and SWR meter.

SWR Meters

Diamond SX-200 SWR/Power Meter

SWR and Power Meter

Freq Range: 1.8-200 MHz

Power Ranges: 5W, 20W and 200 W

Price: ~\$100

SWR Meters

MFJ SWR Meter

Note the use of the cross-needle meter to avoid the need to "cal" the measurement

Some comments on SWR measurements

- SWR meters measure the match at the point of insertion.
- SWR does NOT indicate the radiating effectiveness of an antenna
- When measuring/adjusting an antenna, put the SWR meter as close to the antenna as possible.
- Make sure the SWR meter is spec'd for the frequency of interest.
- Long, lossy coax makes the SWR look better.
- How low should the SWR be? Depends on the situation...what can be reasonably expected? It might be OK to run high SWR.

Antenna Analyzers

Frequency Range: 1.8 – 170 MHz

Price: ~\$250

Measure:

SWR, Return Loss Impedance, Reactance,

Resistance

Default measurement mode is:

- Impedance, Z = R + j X(R= resistance, X = reactance)
- SWR

Also:

Impedance, $Z = Z_{mag} \angle \theta$ Reflection coefficient Return Loss

MFJ-259B Block Diagram

Usage Tips

- Best accuracy near 50 ohms (SWR=1)
- Don't use in high RF environment
- Input circuitry is sensitive
- Discharge antennas before connecting
- Do not apply external voltages to test port
- Don't over-interpret the results (the analyzer is just looking at the impedance match against 50Ω)

Comet CAA-500 Antenna Analyzer

Frequency Range: 1.8 to 500 MHz

Price: ~\$430

Vector Network Analyzer (VNA)

Freq range:

100 KHz to 200 MHz

Range of Z: 1 to 1000 ohm

Dynamic range:

up to 90 dB in Transmission

& 50 dB in Reflection

Two port VNA with S11 and S21

Price: ~\$550

VNA Software

VNA Calibration

Reflection

- 1) Open
- 2) Short
- 3) 50Ω Load

VNA Calibration

Transmission

- 1) Open
- 2) Through

VNA Measurement – 2M Antenna

Measured SWR and Return Loss

VNA Measurement – 2M Antenna

Measured |Z|

VNA Measurement – 2M Antenna

Measured R and X

VNA Transmission Measurement

DCI 2 Meter Filter

VNA Transmission Measurement

DCI 2 Meter Filter

Summary

Basic Test Equipment for Ham Use

- Digital Multimeter
- SWR Meter
- Antenna Analyzer
- Vector Network Analyzer

Safety First

 Always be careful with electrical measurements (especially high voltage)

This presentation is available for download at k0nr.com

